
Proc. POPL 99

1

Abstract

Java has demonstrated the utility of type systems for mobile
code, and in particular their use and implications for security. Se-
curity properties rest on the fact that a well-typed Java program
(or the corresponding verified bytecode) cannot cause certain
kinds of damage.

In this paper we provide a type system for mobile computa-
tion, that is, for computation that is continuously active before
and after movement. We show that a well-typed mobile compu-
tation cannot cause certain kinds of run-time fault: it cannot
cause the exchange of values of the wrong kind, anywhere in a
mobile system.

1 Introduction

In previous work [4] we introduced the (untyped, monadic) am-
bient calculus, a process calculus for mobile computation and
mobile devices. That calculus is able to express, via encodings,
standard computational constructions such as channel-based
communication, functions, and agents.

The type system presented in this paper is able to provide
typings for those encodings, recovering familiar type systems for
processes and functions. In addition, we obtain a type system for
mobile agents and other mobile computations. The type system
is obtained by decorating the untyped calculus with type infor-
mation.

An ambient, in our sense, is a confined place where process-
es run. Each ambient has a name, and may contain multiple pro-
cesses and subambients. A process can cause its surrounding am-
bient to move in or out of other ambients, transporting all the
subambients and active processes with it. A process may also
open an ambient, that is, it can dissolve an ambient boundary
while preserving its contents. Finally, processes within the same
ambient may exchange messages.

Our type system tracks the typing of messages exchanged
within an ambient. For example, the following system consists of
two ambients, named a and b:

The ambient named a contains a process (x:Int).P that is ready to
read an integer message into a variable x and proceed with P, and
a process open b that is ready to open (dissolve the boundary) of
an ambient b found within a. The ambient named b contains a
process in a. �3� that moves the ambient b inside a (by executing
in a) and then outputs the message 3. The ambient b is opened
after moving into a, so the output comes into direct contact with
the reading process within a. The result is the binding of an inte-
ger message to an integer variable, yielding the state:

The challenge of the type system is to verify that this exchange
of messages is well-typed. Note that in the original system the in-
put and the output were contained in separate locations.

Our ambient calculus is related to earlier distributed vari-
ants of the π-calculus, some of which have been equipped with
type systems. The type system of Amadio [1] prevents a channel
from being defined at more than one location. Sewell's system
[12] tracks whether communications are local or non-local, so as
to allow efficient implementation of local communication. In Ri-
ely and Hennessy's calculus [11], processes need appropriate
permissions to perform actions such as migration; a well-typed
process is guaranteed to possess the appropriate permission for
any action it attempts. Other work on typing for mobile agents
includes a type system by De Nicola, Ferrari, and Pugliese [5]
that tracks the access rights an agent enjoys at different localities;
type-checking ensures that an agent complies with its access
rights.

2 The Polyadic Ambient Calculus

We begin by reviewing and slightly extending the ambient cal-
culus of [4]. In that calculus, communication is based on the ex-
change of single values. Here we extend the calculus with com-
munication based on tuples of values (polyadic communication),
since this simple extension greatly facilitates the task of provid-
ing an expressive type system. In addition, we annotate bound
variables with type information.

Four of our process constructions (restriction, inactivity,
composition and replication) are commonly found in process
calculi. To these we add ambients, capabilities, and a simple
form of communication. We briefly discuss these constructions;
see [4] for a more detailed introduction.

The restriction operator, (νn:W)P, creates a new (unique)
name n of type W within a scope P. The new name can be used

a[(x:Int).P | open b] | b[in a. �3�]

Permission to make digital/hard copies of all or part of this material for personal or
classroom use is granted without fee provided that the copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copyright is by permission of the ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires spe-
cific permission and/or fee.
POPL 99 San Antonio Texas USA
Copyright 1999 ACM

a[P{x←3}]

Types for Mobile Ambients

Luca Cardelli
Andrew D. Gordon

Microsoft Research

2

to name ambients and to operate on ambients by name. The in-
active process, 0, does nothing. Parallel composition is denoted
by a binary operator, P | Q, that is commutative and associative.
Replication is a technically convenient way of representing iter-
ation and recursion: the process !P denotes the unbounded repli-
cation of the process P and is equivalent to P | !P.

An ambient is written M[P], where M is the name of the am-
bient, and P is the process running inside the ambient.

The process M.P executes an action regulated by the capa-
bility M, and then continues as the process P. We consider three
kinds of capabilities: one for entering an ambient, one for exiting
an ambient and one for opening up an ambient. (The latter re-
quires special care in the type system.) Capabilities are obtained
from names; given a name n, the capability in n allows entry into
n, the capability out n allows exit out of n and the capability open
n allows the opening of n. Implicitly, the possession of one or all
of these capabilities is insufficient to reconstruct the original
name n from which they were extracted. Capabilities can also be
composed into paths, M.M’, with ε for the empty path.

Communication is asynchronous and local to an ambient. It
is similar to channel communication in the asynchronous π-cal-
culus [2, 6], except that the channel has no name: the surround-
ing ambient provides the context where the communication hap-
pens. The process �M1, ..., Mk� represents the output of a tuple of
values, with no continuation. The process (n1:W1, ..., nk:Wk).P
represents the input of a tuple of values, with continuation P.

Communication is used to exchange both names and capa-
bilities, which share the same syntactic class M of expressions.
One of the main tasks of our type system is to distinguish the Ms
that are names from the Ms that are capabilities, so that each is
guaranteed to be used in an appropriate context. In general, the
type system might distinguish other kinds of expressions, such as
integer and boolean expressions, but we do not include those in
our basic calculus.

Polyadic Ambient Calculus

Syntactic conventions

The following tables describe the operational semantics of
the calculus. The type annotations present in the syntax do not
play a role in reduction; they are simply carried along by the re-
ductions and will be explained in the next section.

Terms are identified up to an equivalence relation, �, called
structural congruence. This relation provides a way of rearrang-
ing expressions so that interacting parts can be brought together.
Then, a reduction relation, ����, acts on the interacting parts to
produce computation steps. The core of the calculus is given by
the reduction rules (Red In), (Red Out), and (Red Open), for mo-
bility, and (Red Comm), for communication.

Terms are also identified up to the consistent renaming of
bound variables, in the restriction and input constructs. We write
P{n←M} for the substitution of M for each free occurrence of
the name n in the process P. Similarly for M{n←M’}.

Free names

Structural Congruence

P,Q ::=
(νn:W)P
0
P | Q
!P
M[P]
M.P
(n1:W1, ..., nk:Wk).P
�M1, ..., Mk�

processes
restriction
inactivity
composition
replication
ambient
action
input
async output

M ::=
n
in M
out M
open M
ε
M.M’

expressions
name
can enter into M
can exit out of M
can open M
null path
composite path

Parentheses may be used for precedence.
(νn:W)P | Q is read ((νn:W)P) | Q
!P | Q is read (!P) | Q
M.P | Q is read (M.P) | Q
(n1:W1, ..., nk:Wk).P | Q is read ((n1:W1, ..., nk:Wk).P) | Q
(νn1:W1, ..., nk:Wk)P � (νn1:W1)...(νnk:Wk)P
n[] � n[0]
M � M.0 (where appropriate)

fn((νn:W)P) � fn(P) – {n}
fn(0) � �

fn(P | Q) � fn(P) ∪ fn(Q)
fn(!P) � fn(P)
fn(M[P]) � fn(M) ∪ fn(P)
fn(M.P) � fn(M) ∪ fn(P)
fn((n1:W1, ..., nk:Wk).P) � fn(P) – {n1, ..., nk}
fn(�M1, ..., Mk�) � fn(M1) ∪ ... ∪ fn(Mk)
fn(n) � {n}
fn(in M) � fn(M)
fn(out M) � fn(M)
fn(open M) � fn(M)
fn(ε) � �

fn(M.M’) � fn(M) ∪ fn(M’)

P � P
P � Q � Q � P
P � Q, Q � R � P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q � (νn:T)P � (νn:T)Q
P � Q � P | R � Q | R
P � Q � !P � !Q

(Struct Res)
(Struct Par)
(Struct Repl)

P � Q � M[P] � M[Q]
P � Q � M.P � M.Q

(Struct Amb)
(Struct Action)

3

Reduction

3 Exchange Types

An ambient is a place where other ambients can enter and exit,
and where processes can exchange messages. The first aspect,
mobility, is regulated by run-time capabilities and will not be re-
stricted by our type system. The second aspect, communication,
is what we now concentrate on.

3.1 Topics of Conversation

Within an ambient, multiple processes can freely execute input
and output actions. Since the messages are undirected, it is easily
possible for a process to utter a message that is not appropriate
for some receiver. The main idea of our type system is to keep
track of the topic of conversation that is permitted within a given
ambient, so that talkers and listeners can be certain of exchang-
ing appropriate messages.

The range of topics is described in the following table by
message types, W, and exchange types, T. The message types are
Amb[T], the type of names of ambients that allow exchanges of
type T, and Cap[T], the type of capabilities that when used may
cause the unleashing of T exchanges (as a consequence of open-
ing ambients that exchange T). The exchange types are Shh, the
absence of exchanges, and W1×...×Wk, the exchange of a tuple of
messages with elements of the respective message types. For
k=0, the empty tuple type is called 1; it allows the exchange of

empty tuples, that is, it allows pure synchronization. The case
k=1 allows any message type to be an exchange type.

Types

For example:

• A quiet ambient: Amb[Shh]

• A harmless capability: Cap[Shh]

• A synchronization ambient: Amb[1]

• An ambient that allows the exchange of harmless capa-
bilities: Amb[Cap[Shh]]

• A capability that may unleash the exchange of names of
quiet ambients: Cap[Amb[Shh]]

3.2 Intuitions

Before presenting the formal type rules, we discuss the intuitions
that lead to them.

Typing of Processes
If a message M has message type W, then �M� is a process that
outputs (exchanges) W messages. Therefore, we will have a rule
stating that:

If P is a process that may exchange W messages, then (x:W).P is
also a process that may exchange W messages. Therefore:

The process 0 exchanges nothing, so it naturally has exchange
type Shh. However, we may also consider 0 as a process that may
exchange any type. This is useful when we need to place 0 in a
context that is already expected to exchange some type.

If P and Q are processes that may exchange T, then P | Q is also
such a process. Similarly for !P.

Therefore, by keeping track of the exchange type of a process, T-
inputs and T-outputs are tracked so that they match correctly
when placed in parallel.

Typing of Ambients
An ambient n[P] is a process that exchanges nothing at the cur-
rent level, so, like 0, it can have any exchange type, and can be
placed in parallel with any process.

P � Q �

(n1:T1, ..., nk:Tk).P � (n1:T1, ..., nk:Tk).Q
(Struct Input)

P | Q � Q | P
(P | Q) | R � P | (Q | R)

(Struct Par
Comm)
(Struct Par Assoc)

!P � P | !P (Struct Repl Par)
(νn:T)(νm:U)P � (νm:U)(νn:T)P if n ≠ m
(νn:T)(P | Q) � P | (νn:T)Q if n 	 fn(P)
(νn:T)m[P] � m[(νn:T)P] if n ≠ m

(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

P | 0 � P
(νn:Amb[T])0 � 0
!0 � 0

(Struct Zero Par)
(Struct Zero Res)
(Struct Zero Repl)

ε.P � P
(M.M’).P � M.M’.P

(Struct ε)
(Struct .)

n[in m. P | Q] | m[R] ���� m[n[P | Q] | R]
m[n[out m. P | Q] | R] ���� n[P | Q] | m[R]
open n. P | n[Q] ���� P | Q
(n1:W1, ..., nk:Wk).P | �M1, ..., Mk� ����

P{n1←M1, ..., nk←Mk}

(Red In)
(Red Out)
(Red Open)
(Red Comm)

P ���� Q � (νn:W)P ���� (νn:W)Q
P ���� Q � n[P] ���� n[Q]
P ���� Q � P | R ���� Q | R

(Red Res)
(Red Amb)
(Red Par)

P’ � P, P ���� Q, Q � Q’ � P’ ���� Q’ (Red �)

W ::=
Amb[T]
Cap[T]

message types
ambient name allowing T exchange
capability unleashing T exchange

T ::=
Shh
W1×...×Wk

exchange types
no exchange
tuple exchange

M : W � �M� : W

P : W � (x:W).P : W

0 : T for any T

P : T, Q : T � P | Q : T
P : T � !P : T

4

There needs to be, however, a connection between the type of n
and the type of P. We give to each ambient name a type Amb[T],
meaning that only T exchanges are allowed in any ambient of
that name. Ambients of different names may permit internal ex-
changes of different types.

By tagging the name of an ambient with the type of exchanges,
we know what kind of exchanges to expect in any ambient we
enter. Moreover, we can tell what happens when we open an am-
bient of a given name.

Typing of Open
Tracking the type of I/O exchanges is not enough by itself. We
also need to worry about open, which might open an ambient and
unleash its exchanges inside the surrounding ambient.

If ambients named n permit T exchanges, then the capability
open n may unleash those T exchanges. We then say that open n
has a capability type Cap[T], meaning that it may unleash T ex-
changes when used:

As a consequence, any process that uses a Cap[T] must be a
process that is already willing to participate in exchanges of type
T, because further T exchanges may be unleashed.

The capability types Cap[T] do not keep track of any infor-
mation concerning in and out capabilities; only the effect of open
is tracked.

3.3 Typing Rules

We base our type system on three judgments. The main judg-
ment tracks the exchange type of a process, that is the type of the
I/O operations of the process, and of the I/O operations that the
process may unleash by opening other ambients.

Judgments

Based on the discussion in the previous section, we can formal-
ize the type system as described in the following table. Conven-
tion: a list of assumptions E
 J1 ... E
 Jk for k=0 means E
��.

Rules

• Example: A process that outputs names of quiet ambients:

• Example: A capability that may unleash S-exchanges. Note
that the in n action contributes nothing to the type of the path;
only the open m action does:

The correctness of the type system is expressed by the fol-
lowing proposition (the proof is in Appendix 7):

3-1 Proposition (Subject Reduction)
If E

 P����:����U and P ���������������� Q then E

 Q����:����U.

Certain “run-time error” expressions are allowed in the syn-
tax but are nonsensical because they confuse names with capa-
bilities. Examples are in n[P], (νn:Amb[T])n.P, and �in (in n)�.
Such expressions are not initially typeable, and they cannot be
produced by well-typed processes because Proposition 3-1 says
that the evolution of well-typed processes leads only to well-
typed processes.

4 Applications

4.1 Channel Types

We now begin to explore the expressiveness of our type system.
The first test case is whether we can represent typed communi-

n[P] : T for any T

n : Amb[T], P : T �

n[P] is well-formed (and can have any type)

n : Amb[T] � open n : Cap[T]

M : Cap[T], P : T � M.P : T

E
�� good environment
E
 M�: W good expression of message type W
E
 P�:�T good process of exchange type T

(Env �) (Env n) (Exp n)

E
 � n	dom(E) E’, n:W, E”
 �

�
�� E, n:W
�� E’, n:W, E”
 n : W

(Exp ε) (Exp .)

E
�� E
 M : Cap[T] E
 M’ : Cap[T]

E
 ε : Cap[T] E
 M.M’ : Cap[T]

(Exp In) (Exp Out) (Exp Open)

E
 M : Amb[S] E
 M : Amb[S] E
 M : Amb[T]

E
 in M : Cap[T] E
 out M : Cap[T] E
 open M : Cap[T]

(Proc Action) (Proc Amb)

E
 M : Cap[T] E
 P : T E
 M : Amb[T] E
 P : T

E
 M.P : T E
 M[P] : S

(Proc Res) (Proc Zero)

E, n:Amb[T]
 P : S E
��

E
 (νn:Amb[T])P : S E
 0 : T

(Proc Par) (Proc Repl)

E
 P : T E
 Q : T E
 P : T

E
 P | Q : T E
 !P : T

(Proc Input)

E, n1:W1, ..., nk:Wk
 P : W1×...×Wk

E
 (n1:W1, ..., nk:Wk).P : W1×...×Wk

(Proc Output)

E
 M1 : W1 ... E
 Mk : Wk

E
 �M1, ..., Mk� : W1×...×Wk

�
 !(νn:Amb[Shh])�n� :�Amb[Shh]

�, n:Amb[T], m:Amb[S]
 in n. open m :�Cap[S]

5

cation channels, that is, whether we can find a typed encoding of
the π-calculus [8].

The basic idea for the encoding of channels is to use an am-
bient as a buffer where input and output processes can exchange
messages. An output operation generates an output packet that
enters the buffer and (after being opened) deposits an output. An
input operation generates an input packet that similarly enters the
buffer, reads an input, and creates a return packet that exits the
buffer and continues with the rest of the process. Each name n of
the π-calculus becomes a pair of names in the ambient calculus:
the name n of the buffer and the name np of the packets. There-
fore, communication of a π-calculus name becomes the commu-
nication of a pair of ambient calculus names. A π-calculus chan-
nel type Ch[W] for names of type W is translated as Amb[W×W].

Encoding of the Typed Polyadic Asynchronous π-calculus

The translation induces the following derived typing rules,
which correspond to a fragment of Pierce and Sangiorgi’s system
[10] consisting only of bidirectional channels, with no subtyp-
ing. Each π-calculus process is given the type Shh, since no com-
munication happens at the level of processes. Instead, communi-
cation happens within buffers, so each buffer receives the type of
the corresponding π-calculus channel. Input and output packets
receive the same type as the buffers where they are opened.

Georges Gonthier has devised two other encodings of the π-
calculus as ambients. The first encoding uses a single name n for
both the buffer and the associated packets, instead of pairs of
names n, np. The packets are temporarily hidden inside another
layer of ambients, so that there is no confusion between packets

and buffers. For the π-calculus this techniques leads to a nicer
encoding, where a channel type maps simply to an ambient type.
Still, the technique of passing packet names along with associat-
ed ambient names is often useful, as we show in later examples.

Gonthier’s Encoding

(We use a subscript type to indicate the type of a term that, while
not available in the term itself, is available in its type derivation.)

Gonthier’s second encoding also uses single names for buff-
ers and packets. In addition, the encoding does not rely on buff-
ers being generated at the place of ν: buffers are generated when-
ever (and wherever!) needed by I/O operations. For the π-calcu-
lus this makes little difference, but if we imagine using channels
freely within the ambient calculus, then it is important not to rely
on a fixed location for the buffer: we may want I/O operations on
a channel to interact whenever they occur within the same ambi-
ent. The potential problem with this idea is that, since there are
multiple buffers, all the output packets may go in one buffer, and
all the input packets may go in a different buffer. To solve this
problems, the buffers are designed to be self-coalescing. This
technique is useful in general, when buffers need to be generated
in a decentralized fashion.

Gonthier’s Coalescing Encoding

�E
 P� � �E�
 �P� : Shh

��, n1:W1, ..., nk:Wk� �

�, n1:�W1�, n1
p:�W1�, ..., nk:�Wk�, nk

p:�Wk�

�Ch[W1, ..., Wk]� � Amb[�W1�×�W1�×...×�Wk�×�Wk�]

�(νπn:Ch[W1, ..., Wk])P� �

(νn,np:�Ch[W1, ..., Wk]�) (n[!open np] | �P�)

�n(n1:W1, ..., nk:Wk).P� �

(νp:Amb[Shh]) (open p |
np[in n. (n1,np

1:�W1�, ..., nk,np
k:�Wk�). p[out n. �P�]])

�n�n1, ..., nk�� � np[in n. �n1, np
1, ..., nk, np

k�]

�P | Q� � �P� | �Q�

�!P� � !�P�

�E,n:Ch[W1, ..., Wk]
 P� � �E
 (νπn:Ch[W1, ..., Wk])P�
�E
 n : Ch[W1, ..., Wk]�, �E
 n1 : W1�, ..., �E
 nk : Wk�
� �E
 n�n1, ..., nk��

�E
 n : Ch[W1, ..., Wk]�, �E, n1:W1, ..., nk:Wk
 P�
� �E
 n(n1:W1, ..., nk:Wk).P�

�E
 P�, �E
 Q� � �E
 P | Q�

�E
 P� � �E
 !P�

�Ch[W1, ..., Wk]� � Amb[�W1�×...×�Wk�]

�(νπn:Ch[W1, ..., Wk])P� �

(νn:�Ch[W1, ..., Wk]�) n[!open n] | �P�

�n(n1:W1, ..., nk:Wk).P� �

(νp:Amb[Shh]) (open p |
(νk:�Ch[W1, ..., Wk]�)

k[in n. n[out k. open k.
(n1:�W1�, ..., nk:�Wk�). p[out n. �P�]]])

�n�n1W1, ..., nkWk�� �

(νk:�Ch[W1, ..., Wk]�) k[in n. n[out k. open k. �n1, ..., nk�]]

�P | Q� � �P� | �Q�

�!P� � !�P�

�Ch[W1, ..., Wk]� � Amb[�W1�×...×�Wk�]

�(νπn:Ch[W1, ..., Wk])P� � (νn:�Ch[W1, ..., Wk]�) �P�

�n(n1:W1, ..., nk:Wk).P� �

(νp:Amb[Shh]) (open p.p[] |
n[!open n | in n |

(n1:�W1�, ..., nk:�Wk�). p[!out n | open p.�P�]])

�n�n1, ..., nk�� � n[!open n | in n | �n1, ..., nk�]

�P | Q� � �P� | �Q�

�!P� � !�P�

6

4.2 Parent-Child Communication

It is often useful for an ambient to communicate with its parent
or its children, as when an agent enters a server and wants to ex-
change information with it. We now describe such a derived
communication mechanism, and how to type it.

Parent-Child I/O

We could adopt the following reduction rules as primitive:

Instead of taking these operators as primitive, it is possible to ap-
proximate parent-child I/O with normal ambient I/O. The encod-
ing given below, however, fails to provide the same atomicity
guarantees as the reductions above. When using this encoding,
parent-child I/O operations are partially sensitive to disruptions
of the protocol due to sudden movement of the child. To avoid
this problem, the child has to implement its own synchroniza-
tion.

The encoding of parent-to-child messaging is quite simple,
using the child ambient as the communication buffer. Messages
from the parent down to a child nch use packets labeled ndn.

This messaging is not sensitive to sudden movement of the child:
messages from parent to child may get blocked but do not get
lost.

The encoding of child-to-parent messaging, instead, is more
problematic. There is a choice of where to put the communica-
tion buffer: in the child or in the parent. If the buffer is in the
child, the parent has to send a process to fetch the message; such
a process may get lost on the way back if the child has moved. If
the buffer is in the parent, the child has to send a process to de-
posit the message; such a process may get lost if the child moves
before the (asynchronous) process can get out.

In both cases, though, the child can wait for a confirmation
from the parent that the message has reached the parent; this can
be done with parent-to-child communication, which is reliable.
After the confirmation, the child is free to move.

We describe the case where the buffer is kept in the parent.
This arrangement seems more interesting because, with a simple
modification, it can be extended to anonymous communication
between arbitrary children and a parent.

Each communication from a child nch to a parent happens
within a mailbox nbox within the parent; the mailboxes are self-
coalescing. Messages from a child nch up to the parent use pack-
ets labeled nup that are sent out of the child and then into nbox.

(The idioms open p. p[] and p[... open p. P] are used to delay the
activation of P until P reaches the proper position.)

The type of names of child ambients that admit parent-child
I/O may be denoted by Amb��[W]. This notation can be translat-
ed to the ambient calculus by mapping each environment name
n : Amb��[W] to four environment names nch, nup, ndn, nbox :
Amb[W], and by mapping each restriction (νn:Amb��[W]) P to
the restrictions (νnch:Amb[W]) (νnup:Amb[W]) (νndn:Amb[W])
(νnbox :Amb[W]) P.

The derived type rules are as follows.

4.3 Function Types

By using a typed encoding of channels in the ambient calculus,
we can provide typed encodings of λ-calculi simply by using the
known encodings of λ-calculi into the π-calculus [9]. For exam-
ple:

Encoding of the Call-by-Value λ-calculus
into the π-calculus

Encoding of the Typed Call-by-Value λ-calculus
into the Ambient Calculus

Therefore, as in the π-calculus, a function is represented by a
channel that communicates an argument and a channel for the re-
sult. The derived types reflect this structure.

�n�M�
�n(x:W).P

parent outputs to child n
child n inputs from parent

�n�M�
�n(x:W).P

child n outputs to parent
parent inputs from child n

�n(x:W).P | n[�n�M� | Q] ���� P{x←M} | n[Q]
�n�M� | n[�n(x:W).P | Q] ���� n[P{x←M} | Q]

�n�M� � ndn[in nch. �M�]
�n(x:W).P � open ndn. (x:W). P

�n�M�.P � nup[out nch. in nbox. �M�]
�n(x:W).PW’ �

(νp:Amb[W’]) (open p. p[] |
nbox[open nup. (x:W). p[out nbox. open p. P] |

!open nbox | in nbox])

(n : Amb��[W] � P : T) � (νn : Amb��[W]).P : T
M : W, n : Amb��[W] �

�n�M� : U (any U)
M : W, n : Amb��[W] �

�n�M� : U (any U)
n : Amb��[W], (x : W � P : W) �

�n(x:W).P : W
n : Amb��[W], (x : W � P : W’) �

�n(x:W).P : W’

�x�k � k����x����
�λx.b�k � (νπn) (k����n���� | !n(x, k’). �b�k’)
�b(a)�k ���� (νπk’, k”) (�b�k’ | k’(x). (�a�k” | k”(y). x����y, k����))

�E
 b:T� � �E�
 (νπk:Ch[�T�]) �b�k : Shh
��, x1:A1, ..., xl:Al� � �, x1:�A1�, ..., xl:�Al�

�A→B� � Ch[�A�, Ch[�B�]]
�x�k � k�x�
�λx:A.bA→B�k �

(νπn:�A→B�) (k�n� | !n(x:�A�, k’:Ch[�B�]). �bB�k’)
�bA→B(aA)�k ����

(νπk’:Ch[�A→B�], k”:Ch[�A�])
(�b�k’ | k’(x:�A→B�). (�a�k” | k”(y:�A�). x�y, k�))

7

4.4 Records

We define operations for handling records of mutable cells; these
will be useful in the next example.

A record r containing cells ci has the general structure r[...
| ci

buf[�Mi� | !open ci
ip] | ...], where r is the cell container, ci

buf are
the value containers for each cell, ci

ip are input packets for read-
ing and writing cell contents, and Mi are the cell contents. The
operations consist of creating an empty record named r (record
r), adding a cell named c with initial contents M to a record r (add
r c M), reading the contents of cell c of record r and binding it to
a variable x in a scope P (get r c (x:W). P), and setting the con-
tents of a cell c of record r to a value M and continuing with P
(set r c �M�. P).

The names cbuf and cip related to a cell c are assigned the
type Amb[W], where W is the type of the values held by the cell.
The name r of a record is simply assigned the type Amb[Shh]. A
record is able to hold cells of different types.

The type of names of a record field holding W may be de-
noted by Field[W]. This notation can be translated to the ambient
calculus by mapping each environment name n : Field[W] to two
environment names nbuf, nip : Amb[W], and by mapping each re-
striction (νn:Field[W]) P to the restrictions (νnbuf:Amb[W])
(νnip:Amb[W]) P.

4.5 Agents

One of the original motivations for the ambient calculus was to
provide a natural semantics for wide-area network languages.
We now define a simple agent language inspired by Telescript
[13]. In the Telescript model, agents travel over the network be-
tween places (agent servers) where agents can meet and commu-
nicate with other agents. Agents carry with them a suitcase con-
taining local agent data.

The syntax of our stripped-down agent language,
Telestrip’d, is described in the following table, together with an
informal description of the various constructions. We give the
semantics of Telestrip’d by translation to the ambient calculus.
The dynamic hierarchical structure of places, agents and suitcas-
es is preserved by our translation; it would not be preserved so
obviously by translations into standard process calculi.

We are able to assign types to our definitions, yielding a
typed agent language: Agent[W1, ..., Wk] is the type of names of
agents that accept communications of type W1×...×Wk.

Telestrip’d Syntax

Typed Telestrip’d Semantics

�record r� � r[]
�add r c M� � cbuf[!open cip | in r. �M�]
�get r c (x:W). PS� �

(νop:Amb[S]) (open op. op[] |
cip[in r. in cbuf. (x:W).

(�x� | op[out cbuf. out r. open op. �P�])])
�set r c �MW�. PS� �

(νop:Amb[S]) (open op. op[] |
cip[in r. in cbuf. (x:W).

(�M� | op[out cbuf. out r. open op. �P�])])

W ::= Agent[W1, ..., Wk] agent types (k ≥ 0)

Net ::=
 noplace

 place p[Arena]
 Net | Net

the network
no place
a place called p
more places

Arena ::=
 empty
 agent (n:W)[Code]
 Arena | Arena

inside a place
nobody there
an agent with fresh name n
more agents

Code ::=
 stop
 go p. Code
 spawn (n’:W)[Code’].

Code
 welcome (n1:W1, ..., nk:Wk).

Code
 meet n�n1, ..., nk�. Code

agent code
stop
go to place p and continue
spawn a fresh agent n’ in the
current place
accept input from a local
agent
output to local agent n

 folder n n’. Code add new folder n with con-
tents n’ to the suitcase

 get n(x:W). Code

 set n�n’�. Code

...

get contents of folder n from
the suitcase
set contents of folder n to n’ in
the suitcase
other constructs (omitted)

�Agent[W1, ..., Wk]� � Amb[�W1�×...×�Wk�]
�Net� : Shh
�Arena�p : Shh if p : Amb[Shh]
�Code�m : �W1�×...×�Wk� if m : �Agent[W1, ..., Wk]�

�noplace� � 0
�place p[Arena]� � p[�Arena�p] (for p:Amb[Shh])
�Net | Net� � �Net� | �Net�

�empty�p � 0
�agent (n:Agent[W1, ..., Wk])[Code]�p �

(νn:�Agent[W1, ..., Wk]�)
n[record sut | add sut at p | �Code�n]

�Arena | Arena�p � �Arena�p | �Arena�p

�stop�m � 0
�go p. Code�m �

get sut at(q:Amb[Shh]). set sut at�p�. out q. in p. �Code�m

�spawn (n’:Agent[W1, ..., Wk])[Code’]. Code�m � (for n’ ≠ m)
get sut at(p:Amb[Shh]). (νn’,u:�Agent[W1, ..., Wk]�)

(n’[record sut | add sut at p | out m. open u. �Code’�n’]
�| open u. �Code�m

�| (νt:Amb[Shh]) t[out m. in n’. out n’.
(u[out t. in n’] | u[out t. in m])])

8

No exchange happens at the network level, so the network
has type Shh. Each arena has also type Shh, so the name of each
place has type Amb[Shh].

The type of an ambient reflects only the type of the ex-
changes performed within it; each agent welcomes (inputs) a sin-
gle type of data, but can output to agents of several different
types. The meet primitive given above is asynchronous; a (more
natural) synchronous version is possible but more complicated.

The name of the agent suitcase, sut, is a distinguished name
of type Amb[Shh]. A suitcase is a record containing a collection
of cells. Each suitcase contains a cell named at, a distinguished
name of type Amb[Amb[Shh]], containing the name of the
agent’s current place.

5 Affine Capability Types

In this section, we describe an extension of our type system ob-
tained by adding a new type of affine capabilities Cap1[T]. We
enforce the rule that whenever a process inputs a capability of
this type, the process may exercise or output the capability at
most once.

The motivation for this type system is that in some situa-
tions we may want capabilities to play the role of tickets or
stamps that may be used once to access a valuable resource (for
example, a compute server, or a printer). We would like to guar-
antee that if a well-typed process is presented with k capabilities
for accessing a resource, perhaps after a fee has been paid, then
that resource is exercised at most k times.

5.1 Limiting the Use of Capabilities

Linear type systems for the π-calculus, beginning with the work
of Kobayashi, Pierce and Turner [7], restrict the usages of bound
names in a variety of ways. Our system is analogous, but is affine
(at most one use of names) rather than linear (exactly one use).

We modify the syntax of types by renaming Cap[T] to
Capω[T] and by introducing a new type, Cap1[T], of affine capa-
bilities. The multiplicities 0, 1 and ω are used to count the num-
ber of occurrences of names in terms. We enforce the following
simple principles:

• An input name of type Cap1[T] may be exercised at most once.

• An input name of type Capω[T] or Amb[T] may be exercised as

often as desired, as before.

• A restricted name of type Amb[T] may be exercised as often as
desired, as before.

For example:

• Disallowed: (x:Cap1[T]). (�x� | �x�), (x:Cap1[T]). (�x� | n[x.P])

• Allowed: (x:Capω[T]). (�x� | �x� | n[x.P]),
 (x:Amb[T]). (x[] | x[]), (x:Amb[T]). (x[P] | x[Q]),

(νx:Amb[T]). (�open x� | �open x� | (y:Cap1[T]). �y�)
Here is the syntax of the extended type system:

Types

We let µ+ range over {1, ω}.
Let the multiplicity order, µ ≤ µ’, be the least reflexive and

transitive relation to satisfy 0 ≤ 1 ≤ ω. Let the addition, µ+µ’ of
multiplicities µ and µ’ be the multiplicity defined by the equa-
tions µ+0 = 0+µ = µ, 1+1 = ω, and µ+ω = ω+µ = ω. Let the rep-
lication, !µ, of a multiplicity be the multiplicity µ+µ.

The functions n occurs M and n occurs P, given by the fol-
lowing equations, count the occurrences of the name n in the
term M and in the process P, respectively. Note that any name
under a ! has multiplicity ω.

�meet n�n1W1, ..., nkWk�. Code�m �

(νz:�Agent[W1, ..., Wk]�)
z[out m. in n. n[out z. open z. �n1, ..., nk�]] | �Code�m

�welcome (n1:W1, ..., nk:Wk). Code�m �

open m | (n1:�W1�, ..., nk:�Wk�). �Code�m

�folder n n’W. Code�m �

(νn:Field[�W�]) (add sut n n’ | �Code�m)
�get n(x:W). Code�m � get sut n(x:�W�). �Code�m

�set n�n’�. Code�m � set sut n�n’�. �Code�m

...

W ::=
Amb[T]
Cap1[T]
Capω[T]

message types
ambient name
affine capability
unlimited capability

T ::=
Shh
W1×...×Wk

exchange types
no exchange
tuple exchange

µ ::=
0
1
ω

multiplicities
never
once
many

n occurs m � 1 if m=n; 0 otherwise
n occurs in M � n occurs M
n occurs out M � n occurs M
n occurs open M � n occurs M
n occurs M.M’ � (n occurs M) + (n occurs M’)
n occurs ε � 0

n occurs M.P � (n occurs M) + (n occurs P)
n occurs M[P] � (n occurs M) + (n occurs P)
n occurs (νm:W)P � (n occurs M) for m ≠ n
n occurs 0 � 0
n occurs P | Q � (n occurs P) + (n occurs Q)
n occurs !P � !(n occurs P)
n occurs (n1:W1, ..., nk:Wk).P �

n occurs P for n 	�{n1, ..., nk}
n occurs �M1, ..., Mk� �

(n occurs M1) + ... + (n occurs Mk)

9

For example:

We define a new type system using the same rules as before
except for the modifications listed below.

Rules

A subject reduction result can be proven for the modified system
(the proof is in Appendix 8).

5-1 Proposition (Subject Reduction)
If E

 P����:����U and P ���������������� Q then E

 Q����:����U.

5.2 Avoiding a Synchronization Error Using Affine Types

To illustrate the use of affine capability types, we describe a taxi
protocol. This protocol uses affine typing to achieve proper
movement synchronization between two parties. The taxi pub-
lishes a capability for a passenger to enter a seat in the back of
the taxi. The passenger enters and tells the taxi a route to follow.
At the end of the trip the taxi door is unlocked, and the passenger
may exit. The capabilities for entering and exiting the taxi, and
for the route, are given affine types.

If the capability to enter the taxi were to be accidentally or
maliciously duplicated, a synchronization error could arise, in
which a passenger holding a valid capability would attempt to
enter the taxi, but would be left behind because another passen-
ger got the taxi first. This possibility is ruled out by affine typing.

In the following, the parameter M is the route the taxi is to
follow, and the parameter P is the behavior of the passenger at
the destination.

If we suppose there is some environment E with:

then:

(N.B.: the passenger-taxi system can also be given type
Capω[Shh]. We can force the Cap1[Shh] typing by situating the
system within an ambient whose name has type
Amb[Cap1[Shh]].)

Initially, the system reduces as follows, up to the point
where the passenger has entered the taxi and the taxi is ready to
follow the route M:

Once the route M has been followed, the lock ambient is opened,
and the passenger exits.

5.3 Dispensing Transferrable Tokens Using Affine Types

A second example demonstrates that affine types allow capabil-
ities to serve as consumable, transferrable tokens for a resource.

We consider a system consisting of several principals that
are given access to a printer. Each principal has an API (inter-
face) allowing it to print messages on the printer. Each time it ac-
cesses the API, a principal must consume a token, the capability
open api. This capability is given the affine type Cap1[Msg],
where Msg is the type of messages printed by the printer. By dis-
pensing different numbers of these tokens to different principals,
we may selectively control the number of messages each princi-
pal has a right to print. The top-level of our system, sys, serves
as a printer spool; any outputs here may be thought of as being
sent to a printer.

We describe each principal as follows:

n occurs (m[] | (νn:W) n[]) = 0
n occurs m[n.0] = 1
n occurs (m[n.0] | �n�) = ω

(Exp ε) (Exp .)

E
�� E
 M : Capµ+[T] E
 M’ : Capµ+[T]

E
 ε : Capµ+[T] E
 M.M’ : Capµ+[T]

(Exp In) (Exp Out)

E
 M : Amb[S] E
 M : Amb[S]

E
 in M : Capµ+[T] E
 out M : Capµ+[T]

(Exp Open) (Proc Action)

E
 M : Amb[T] E
 M : Capµ+[T] E
 P : T

E
 open M : Capµ+[T] E
 M.P : T

(Proc Input) (where �i�1..k. Wi =Cap1[Ti] � ni occurs P ≤ 1)

E, n1:W1, ..., nk:Wk
 P : W1×...×Wk

E
 (n1:W1, ..., nk:Wk).P : W1×...×Wk

passenger M P �

(enter:Cap1[Shh]).
move[enter. talk[out move. �M� |

talk[(exit:Cap1[Shh]). move[exit. P]]]]
taxi �

(ν taxi:Amb[Shh], go:Amb[Shh],
lock:Amb[Shh], seat:Amb[Cap1[Shh]])

(�in taxi. in lock. in seat� |
 taxi[open go |

lock[
seat[open talk. (route:Cap1[Shh]).

(open talk. �out seat. out taxi� |
go[out seat. out lock. route. open lock])]]])

E
 talk : Amb[Cap1[Shh]] E
 M : Cap1[Shh]
E
 move : Amb[Shh] E
 P : Shh

E
 (passenger M P | taxi) : Cap1[Shh]

passenger M P | taxi ����������������*
(ν taxi:Amb[Shh], lock:Amb[Shh], seat:Amb[Cap1[Shh]])

taxi[M. open lock |
lock[move[out taxi. P] | seat[move[]]]]

10

The process parameter P models the specific behavior of the
principal. We assume that the names api and print are not free in
P. The ambient named toks represents a channel on which the
principal receives capabilities for printing. A token open api pro-
vides access to the printer API, which is defined by:

Our example system consists of two principals, named alice
and bob:

In this example, we dispense two tokens to alice, via the
process toks[in alice. in toks | �open api� | �open api�], but none to
bob. Principal alice inputs the two tokens as variables x1 and x2;
she uses x1 herself to print M, but donates the other to bob, who
inputs it as y, and uses it to print N.

The process sys has type Msg. We have:

We may easily add more principals to this example, and we
may dispense as many tokens as is appropriate to each new prin-
cipal. By using affine types to regulate the use of printer tokens,
principals are free to transfer tokens amongst themselves, but the
total number of messages printed is limited by the number of to-
kens dispensed initially. Without linear or affine types, it would
be harder to allow the transfer of printer tokens between princi-
pals while still controlling their total number.

6 Conclusions

We have presented a type system for the ambient calculus. The
types arising from this work are unusual in that they do not cor-
respond directly to channel or function types. The type system
guarantees the soundness of message exchanges, while leaving
great flexibility in mobility. As an example, we have given a nat-
ural semantics for a typed agent language.

Our type system is rather basic, roughly corresponding to
the simply-typed discipline for the λ-calculus. Much richer typ-
ing disciplines can be imagined, along the usual lines. Perhaps
more interestingly, it is appealing to try and use static type sys-
tems to restrict mobility; this is the subject of current work.

Acknowledgments
Georges Gonthier made useful remarks on an early draft, and
discovered new π-calculus encodings that illustrate interesting
techniques.

7 Appendix: Subject Reduction

Let E

 J denote any judgment.

7-1 Lemma
If E’, n:W, E”

 J then n 	 dom(E’, E”).

7-2 Lemma
If E

 n����: W and E

 n����: W’, then W=W’.

7-3 Lemma (Implied Judgment)
If E’, E”
 J then E’
��.

7-4 Lemma (Exchange)
If E’, n:W’, m:W”, E”
 J then E’, m:W”, n:W’, E”
 J.

7-5 Lemma (Weakening)
If E’, E”
 J and n 	 dom(E’, E”) then E’, n:W, E”
 J.

7-6 Lemma (Strengthening)
If E’, n:W, E”
 J and n 	 fn(J) then E’, E”
 J.

7-7 Lemma (Substitution)
If E’, n:W, E”
 J and E’
 M : W then E’, E”
 J{n←M}.

7-8 Proposition (Subject Congruence)
(1) If E

 P����:����U and P ���� Q then E

 Q����:����U.
(2) If E

 P����:����U and Q ���� P then E

 Q����:����U.

Proof

By mutual induction on the derivations of P � Q and Q ���� P.

(1) If E

 P����:����U and P ���� Q then E

 Q����:����U.
(Struct Refl) Trivial.
(Struct Symm) Then Q ���� P. By induction hypothesis (2), we
have E

 Q����:����U.
(Struct Trans) Then P � R, R � Q for some R. By induction hy-
pothesis (1), E

 R����:����U. Again by induction hypothesis (1), E

Q����:����U.
(Struct Res) Then P = (νn:W)P’ and Q = (νn:W)Q’, with P’ �
Q’. Assume E

 P����:����U. This must have been derived from (Proc
Res), with E, n:Amb[T]

 P’����:����U, where W=Amb[T]. By induction
hypothesis, E, n:Amb[T]

 Q’���� :���� U. By (Proc Res) E

(νn:Amb[T])Q’����:����U.
(Struct Par) Then P = P’ | R, Q = Q’ | R, and P’ � Q’. Assume
E

 P’ | R����:����U. This must have been derived from (Proc Par), with
E

 P’ :����U and E

 R����:����U. By induction hypothesis E

 Q’ :����U.
By (Proc Par) E

 Q’ | R����:����U.
(Struct Repl) Then P = !P’, Q = !Q’, and P’ � Q’. Assume E

P����:����U. This must have been derived from (Proc Repl), with E

P’����:����U. By induction hypothesis, E

 Q’����:����U. By (Proc Repl) E

!Q’����:����U.

principal n P �

n[open n | printAPI n | toks[!open toks | P]]

printAPI n � !api[(x:Msg). print[out n. �x�]]

sys �

(ν alice:Amb[Msg], bob:Amb[Msg], api:Amb[Msg],
print:Amb[Msg], toks:Amb[Cap1[Msg]])

(!open print |
toks[in alice. in toks | �open api� | �open api�] |
principal alice ((x1:Cap1[Msg]). (x2:Cap1[Msg]).

alice[out toks | x1. �M� |
toks[out alice. in bob. in toks. �x2�]])

principal bob ((y:Cap1[Msg]).
bob[out toks. y. �N�]))

sys ����������������* �M� | �N�

11

(Struct Amb) Then P = M[P’], Q = M[Q’], and P’ � Q’. As-
sume E

 P����:����U. This must have been derived from (Proc Amb),
with E

 M����:����Amb[T] and E

 P’����:����T for some T. By induction
hypothesis, E

 Q’����:����T. By (Proc Amb) we derive E

 M[Q’]����:����U.
(Struct Action) Then P = M.P’, Q = M.Q’, and P’ � Q’. Assume
E

 P����:����U. This must have been derived from (Proc Action), with
E

 M����:����Cap[U] and E

 P’����:����U. By induction hypothesis, E

 Q’
:����U. By (Proc Action) E

 M[Q’]����:����U.
(Struct Input) Then P = (n1:W1, ..., nk:Wk).P’, Q = (n1:W1, ...,
nk:Wk).Q’, and P’ � Q’. Assume E

 P����:����U. This must have been
derived from (Proc Input), with E, n1:W1, ..., nk:Wk

 P’���� :����U,
where U = W1×...×Wk. By induction hypothesis, E, n1:W1, ...,
nk:Wk

 Q’����:����U. By (Proc Input) E

 (n1:W1, ..., nk:Wk).Q’����:����U.
(Struct Par Comm) Then P = P’ | P” and Q = P” | P’. Assume
E

 P’ | P”����:����U. This must have been derived from (Proc Par),
with E

 P’ :����U and E

 P”����:����U. By (Proc Par) E

 P” | P’����:����U.
(Struct Par Assoc) Then P = (P’ | P”) | P’” and Q = P’ | (P” |
P’”). Assume E

 (P’ | P”) | P’”����:����U. This must have been de-
rived from (Proc Par) twice, with E

 P’ :����U, E

 P”����:����U, and E

 P’”����:����U. By (Proc Par) twice, E

 P’ | (P” | P’”)����:����U.
(Struct Repl Par) Then P = !P’ and Q = P’ | !P’. Assume E

!P’����:����U. This must have been derived from (Proc Repl), with E

P’����:����U. By (Proc Par), E

 P’ | !P’����:����U.
(Struct Res Res) Then P = (νn:W)(νm:V)P’ and Q =
(νm:V)(νn:W)P’ with n ≠ m. Assume E

 (νn:W)(νm:V)P’����:����U.
This must have been derived from (Proc Res) twice, with E,
n:Amb[T], m:Amb[S]

 P’����:����U, where W=Amb[T] and V=Amb[S].
By Lemma 7-4 we have E, m:Amb[S], n:Amb[T]

 P’���� :����U. By
(Proc Res) twice we have E

 (νm:Amb[S])(νn:Amb[T])P’����:����U.
(Struct Res Par) Then P = (νn:W)(P’ | P”) and Q = P’ |
(νn:W)P”, with n 	 fn(P’). Assume E

 P����:����U. This must have
been derived from (Proc Res), with E, n:Amb[T]
 P’ | P” : U and
W = Amb[T], and from (Proc Par), with E, n:Amb[T]
 P’ : U and
E, n:Amb[T]
 P” : U. By Lemma 7-6, since n 	 fn(P’), we have
E
 P’ : U. By (Proc Res) we have E
 (νn:Amb[T])P” : U. By
(Proc Par) we have E
 P’ | (νn:Amb[T])P” : U.
(Struct Res Amb) Then P = (νn:W)m[P’] and Q = m[(νn:W)P’],
with n ≠ m. Assume E

 P����:����U. This must have been derived from
(Proc Res) with E,n:Amb[T]
 m[P’] : U with W = Amb[T], and
from (Proc Amb) with E, n:Amb[T]
 P’ : S and E, n:Amb[T]

m : Amb[S] for some S. By (Proc Res) we have E

(νn:Amb[T])P’ : S. By Lemma 7-6, since n ≠ m, we have E
 m
: Amb[S]. By (Proc Amb) we can derive E
 m[(νn:Amb[T])P’] :
U.
(Struct Zero Par) Then P = P’ | 0 and Q = P’. Assume E

 P����:
U. This must have been derived from (Proc Par) with E

 P’����:����U
and E

 0����:����U.
(Struct Zero Res) Then P = (νn:W)0 and Q = 0. Assume E

 P
:���� U. This must have been derived from (Proc Res) with E,
n:Amb[T]
 0 : U and W = Amb[T]. By Lemma 7-6, E
 0 : U.
(Struct Zero Repl) Then P = !0 and Q = 0. Assume E

 P����:����U.
This must have been derived from (Proc Repl) with E
 0 : U.

(Struct ε) Then P = ε.P’ and Q = P’. Assume E

 P����:����U. This
must have been derived from (Proc Action) with E

 P’����:����U.
(Struct .) Then P = (M.M’).P’ and Q = M.M’.P’. Assume E

 P
:����U. This must have been derived from (Proc Action) with E

M.M’����:����Cap[U] and E

 P’����:����U. The former must come from (Exp
.) with E

 M����:����Cap[U] and E

 M’����:����Cap[U]. By (Proc Action)
twice we have E

 M.M’.P’����:����U.

 (2) If E

 P����:����U and Q ���� P then E

 Q����:����U.
(Struct Refl) Trivial.
(Struct Symm) Then P ���� Q. By induction hypothesis (1), we
have E

 Q����:����U.
(Struct Trans) Then Q � R, R � P for some R. By induction hy-
pothesis (2), E

 R����:����U and E

 Q����:����U.
(Struct Res), (Struct Par), (Struct Repl), (Struct Amb),
(Struct Action), (Struct Input), (Struct Par Assoc) Symmet-
rical to case (1).
(Struct Par Comm) Then Q = P’ | P” and P = P” | P’. Assume
E

 P” | P’����:����U. This must have been derived from (Proc Par),
with E

 P” :����U and E

 P’����:����U. By (Proc Par) E

 P’ | P”����:����U.
(Struct Repl Par) Then Q = !P’ and P = P’ | !P’. Assume E

 P’
| !P’����:����U. This must have been derived from (Proc Par), with E

!P’����:����U.
(Struct Res Res) Then Q = (νn:W)(νm:V)P’ and P =
(νm:V)(νn:W)P’ with n ≠ m. Assume E

 (νm:V)(νn:W)P’����:����U.
This must have been derived from (Proc Res) twice, with E,
m:Amb[S], n:Amb[T]

 P’����:����U, where W=Amb[T] and V=Amb[S].
By Lemma 7-4 we have E, n:Amb[T], m:Amb[S]

 P’���� :����U. By
(Proc Res) twice we have E

 (νn:Amb[T])(νm:Amb[S])P’����:����U.
(Struct Res Par) Then Q = (νn:W)(P’ | P”) and P = P’ |
(νn:W)P”, with n 	 fn(P’). Assume E

 P����:����U. This must have
been derived from (Proc Par), with E
 P’ : U and E
 (νn:W)P”
: U, and the latter from (Proc Res), with E, n:Amb[T]
 P” : U
where W=Amb[T]. By Lemma 7-5, since n 	 dom(E’), we have
E, n:Amb[T]
 P’ : U. By (Proc Par) we have E, n:Amb[T]
 P’ |
P” : U. By (Proc Res) we have E
 (νn:Amb[T])(P’ | P”) : U.
(Struct Res Amb) Then Q = (νn:W)m[P’] and P = m[(νn:W)P’],
with n ≠ m. Assume E

 P����:����U. This must have been derived from
(Proc Amb) with E
 m : Amb[S] and E
 (νn:W)P’ : S for some
S. The latter must have been derived from (Proc Res) with E,
n:Amb[T]
 P’ : S with W = Amb[T]. By Lemma 7-5, since n 	
dom(E), we have E, n:Amb[T]
 m : Amb[S]. By (Proc Amb) we
can derive E, n:Amb[T]
 m[P’] : U. By (Proc Res) we have E

(νn:Amb[T])m[P’] : U.
(Struct Zero Par) Then Q = P’ | 0 and P = P’. Assume E

 P����:
U. By Lemma 7-3, E
��. By (Proc Zero) E

 0����:����U. By (Proc
Par), E

 P’ | 0����:����U.
(Struct Zero Res) Then Q = (νn:Amb[T])0 and P = 0. Assume E

 P����:����U. By Lemma 7-5, E, n:Amb[T]

 0����:����U. By (Proc Res) E

(νn:Amb[T])0����:����U.
(Struct Zero Repl) Then Q = !0 and P = 0. Assume E

 P����:����U.
By (Proc Repl) with E
 !0 : U.

12

(Struct ε) Then Q = ε.P’ and P = P’. Assume E

 P����:����U. By Lem-
ma 7-3, E
��. By (Exp ε), E

 ε����:����Cap[U]. By (Proc Action) with
E

 ε.P’����:����U.
(Struct .) Then Q = (M.M’).P’ and P = M.M’.P’. Assume E

 P
:����U. This must have been derived from (Proc Action) twice, with
E

 M����:����Cap[U], E

 M’����:����Cap[U], and E

 P’����:����U. By (Exp .) we
have E

 M.M’���� :���� Cap[U]. By (Proc Action) we have E

(M.M’).P’����:����U.

7-9 Proof of Proposition 3-1 (Subject Reduction)
If E

 P����:����U and P ���������������� Q then E

 Q����:����U.

Proof

By induction on the derivation of P ���������������� Q.

(Red In) Then P = n[in m. P’ | P”] | m[P’”] and Q = m[n[P’ |
P”] | P’”]. Assume E

 P����:����U. This must have been derived from
(Proc Par), with E

 n[in m. P’ | P”]����:����U and E

 m[P’”]���� :����U.
Those two judgments must have been derived from (Proc Amb),
with E
 n : Amb[T], E
 in m. P’ | P” : T for some T, and E
 m
: Amb[S], E
 P’” : S for some S. Moreover, E
 in m. P’ | P” :
T must come from (Proc Par) with E
 in m. P’ : T and E
 P” :
T, and E
 in m. P’ : T must come from (Proc Action) with E

in m : Cap[T] and E
 P’ : T. Note that E
 m : Amb[S] is consis-
tent with E
 in m : Cap[T], by (Exp In). By (Proc Par) we have
E
 P’ | P” : T, and by (Proc Amb) we can derive E
 n[P’ | P”]
: S. Then, by (Proc Par) we have E
 n[P’ | P”] | P’” : S, and by
(Proc Amb) we can derive E
 m[n[P’ | P”] | P’”] : U.

(Red Out) Then P = m[n[out m. P’ | P”] | P’”] and Q = n[P’ |
P”] | m[P’”]. Assume E

 P����:����U. This must have been derived
from (Proc Amb), with E
 m : Amb[T] and E

 n[out m. P’ | P”]
| P’”����:����T for some T. The latter must come from (Proc Par) with
E

 P’”����:����T and E

 n[out m. P’ | P”]����:����T. The latter must come
from (Proc Amb) with E

 n����:����Amb[S] and E

 out m. P’ | P”����:����S
for some S. The latter must come from (Proc Par) with E

 P”����:
S and E

 out m. P’ :����S. The latter must come from (Proc Action)
with E

 out m :����Cap[S] and E

 P’ :����S. Note that E
 m : Amb[T]
is consistent with E
 out m : Cap[S], by (Exp Out). By (Proc
Par) we have E
 P’ | P” : S, and by (Proc Amb) we can derive
E
 n[P’ | P”] : U. Then, by (Proc Amb) we can derive E

m[P’”] : U, and by (Proc Par) we have E
 n[P’ | P”] | m[P’”] :
U.

(Red Open) Then P = open n. P’ | n[P”] and Q = P’ | P”. As-
sume E

 P����:����U. This must have been derived from (Proc Par),
with E

 open n. P’����:����U and E

 n[P”]����:����U. The judgment E

open n. P’����:����U must have been derived from (Proc Action), with
E
 open n : Cap[U] and E
 P’ : U, and from (Exp Open) with
E
 n : Amb[U]. The judgment E

 n[P”]����:����U must have then been
derived from (Proc Amb) with E
 n : Amb[U’], and E
 P” : U’.
By Lemma 7-2, U’=U. By (Proc Par) we have E
 P’ | P” : U.

(Red Comm) Then P = (n1:W1, ..., nk:Wk).P’ | �M1, ..., Mk� and Q
= P’{n1←M1, ..., nk←Mk}. Assume E

 P����:����U. This must have
been derived from (Proc Par) with E

 (n1:W1, ..., nk:Wk).P’����:����U
and E

 �M1, ..., Mk����� :����U. The former must have been derived

from (Proc Input) with E, n1:W1, ..., nk:Wk
 P’ : W1×...×Wk, and
U = W1×...×Wk. The latter must have been derived from (Proc
Output) with E
 M1 : W1’ ... E
 Mk : Wk’, and U =
W1’×...×Wk’. Hence, W1 = W1’ ... Wk = Wk’. By k applications of
Lemma 7-7, we have that E
 P’{n1←M1, ..., nk←Mk} : U.

(Red Res) Then P = (νn:W)P’, Q = (νn:W)Q’, and P’ ���������������� Q’. As-
sume E

 P����:����U. This must have been derived from (Proc Res)
with E, n:Amb[T]

 P’����:����U, where W = Amb[T]. By induction hy-
pothesis E, n:Amb[T]

 Q’���� :���� U. By (Proc Res), E

(νn:Amb[T])Q’����:����U.

(Red Amb) Then P = n[P’], Q = n[Q’], and P’ ���������������� Q’. Assume
E

 P����:����U. This must have been derived from (Proc Amb) with E

 n����:����Amb[T] and E

 P’����:����T for some T. By induction hypothesis,
E

 Q’����:����T. Then, by (Proc Amb) we can derive E

 n[Q’]����:����U.

(Red Par) Then P = P’ | R, Q = Q’ | R, and P’ ���������������� Q’. Assume E

 P����:����U. This must have been derived from (Proc Par) with E

P’����:����U and E

 R����:����U. By induction hypothesis, E

 Q’����:����U. By
(Proc Par) E

 Q’ | R����:����U.

(Red �) Then P � P’, Q � Q’, and P’ ���������������� Q’. Assume E

 P����:����U.
By Proposition 7-8, E

 P’����:����U. By induction hypothesis, E

 Q’
:����U. By Proposition 7-8, E

 Q����:����U.

8 Appendix: Subject Reduction for Affine Types

8-1 Lemma
µ+µ’ = µ’+µ

8-2 Lemma
(µ+µ’)+µ” = µ+(µ’+µ”)

8-3 Lemma
!µ = µ + !µ

8-4 Lemma
If P � Q then n occurs P = n occurs Q.

Proof

By induction on the derivation of P � Q.

(Struct Refl) Trivial.

(Struct Symm) Then Q � P. By induction hypothesis, we have
n occurs Q = n occurs P.

(Struct Trans) Then P � R, R � Q for some R. By induction hy-
pothesis, n occurs P = n occurs R. Again by induction hypothe-
sis, n occurs R = n occurs Q. Hence, n occurs P = n occurs Q.

(Struct Res) Then P = (νm:W)P’ and Q = (νm:W)Q’, with P’ �
Q’. Since m is bound, we may assume that m ≠ n. By induction
hypothesis, n occurs P’ = n occurs Q’. Therefore, n occurs P = n
occurs P’ = n occurs Q’ = n occurs Q.

(Struct Par) Then P = P’ | R, Q = Q’ | R, and P’ � Q’. By induc-
tion hypothesis, n occurs P’ = n occurs Q’. Therefore, n occurs
P = (n occurs P’) + (n occurs R) = (n occurs Q’) + (n occurs R)
= n occurs Q.

13

(Struct Repl) Then P = !P’, Q = !Q’, and P’ � Q’. By induction
hypothesis, n occurs P’ = n occurs Q’. Therefore, n occurs P =
!(n occurs P’) = !(n occurs Q’) = n occurs Q.

(Struct Amb) Then P = M[P’], Q = M[Q’], and P’ � Q’. By in-
duction hypothesis, n occurs P’ = n occurs Q’. Therefore, n oc-
curs P = (n occurs M) + (n occurs P’) = (n occurs M) + (n occurs
Q’) = n occurs Q.

(Struct Action) Then P = M.P’, Q = M.Q’, and P’ � Q’. By in-
duction hypothesis, n occurs P’ = n occurs Q’. Therefore, n oc-
curs P = (n occurs M) + (n occurs P’) = (n occurs M) + (n occurs
Q’) = n occurs Q.

(Struct Input) Then P = (n1:W1, ..., nk:Wk).P’, Q = (n1:W1, ...,
nk:Wk).Q’, and P’ � Q’. Since the names n1, ..., nk are bound, we
may assume that n 	�{n1, ..., nk}. By induction hypothesis, n oc-
curs P’ = n occurs Q’. Therefore, n occurs P = n occurs P’ = n
occurs Q’ = n occurs Q.

(Struct Par Comm) Then P = P’ | P” and Q = P” | P’. By Lem-
ma 8-1, we have: n occurs P = (n occurs P’) + (n occurs P”) =
(n occurs P”)+(n occurs P’) = n occurs Q.

(Struct Par Assoc) Then P = (P’ | P”) | P’” and Q = P’ | (P” |
P’”). By Lemma 8-2, we have: n occurs P = ((n occurs P’) + (n
occurs P”)) + (n occurs P’”) = (n occurs P’)+((n occurs P”)+(n
occurs P’”)) = n occurs Q.

(Struct Repl Par) Then P = !P’ and Q = P’ | !P’. By Lemma 8-
3, we have: n occurs P = !(n occurs P’) = (n occurs P’) + !(n oc-
curs P’) = n occurs Q.

(Struct Res Res) Then P = (νm:W)(νm’:V)P’ and Q = (νm’:V)
(νm:W)P’ with m ≠ m’. Since the names m and m’ are bound, we
may assume that n ≠ m and n ≠ m’. Therefore, n occurs P = n oc-
curs P’ = n occurs Q.

(Struct Res Par) Then P = (νm:W)(P’ | P”) and Q = P’ |
(νm:W)P”, with m 	�fn(P’). Since the name m is bound, we may
assume that n ≠ m. Therefore, n occurs P = (n occurs P’) + (n oc-
curs P”) = n occurs Q.

(Struct Res Amb) Then P = (νm:W)m’[P’] and Q =
m’[(νm:W)P’], with m ≠ m’. Since the name m is bound, we may
assume that n ≠ m. Therefore, n occurs P = (n occurs m’)+(n oc-
curs P’) = n occurs Q.

(Struct Zero Par) Then P = P’ | 0 and Q = P’. We have: n oc-
curs P = (n occurs P’) + 0 = n occurs P’ = n occurs Q.

(Struct Zero Res) Then P = (νm:W)0 and Q = 0. We have, n oc-
curs P = n occurs Q.

(Struct Zero Repl) Then P = !0 and Q = 0. We have n occurs P
= 0 = n occurs Q.

(Struct ε) Then P = ε.P’ and Q = P’. We have n occurs P = n oc-
curs P’ = n occurs Q.

(Struct .) Then P = (M.M’).P’ and Q = M.M’.P’. By Lemma 8-
2, we have n occurs P = ((n occurs M) + (n occurs M’)) + n oc-
curs P’ = n occurs M + (n occurs M’ + n occurs P’) = n occurs Q.

8-5 Lemma
If n 	 fn(M) then n occurs M = 0.

Proof

By induction on the structure of M.

8-6 Lemma
If n 	 {m} ∪ fn(M) then:
(1) n occurs N{m←M} = n occurs N.
(2) n occurs P{m←M} = n occurs P.

Proof

By inductions on the structure of N and P.

The extended type system is as follows: the judgments are
as in Section 3.3, and the rules are as in Section 3.3, except for
the modifications described in Section 5. We now prove subject
reduction for the extended system.

8-7 Lemma
If E
 M : T then fn(M) ⊆ dom(E).

8-8 Lemma
If E’, n:W, E”
 J then n 	 dom(E’,E”).

8-9 Lemma
If E
 n : W and E
 n : W’, then W = W’.

8-10 Lemma (Implied Judgment)
If E’, E”
 J then E’
 �.

8-11 Lemma (Exchange)
If E’, n:W’, m:W”, E”
 I then E’, m:W”, n:W’, E”
 J.

8-12 Lemma (Weakening)
If E’, E”
 J and n 	 dom(E’,E”) then E’, n:W, E”
 J.

8-13 Lemma (Strengthening)
If E’, n:W, E”
 J and n 	 fn(J) then E’, E”
 J.

8-14 Lemma (Substitution)
If E’, n:W, E”
 J and E’
 M : W then E’, E”
 J{n←M}.

Proof

By induction on the derivation of E’, n:W, E”
 J.

(Proc Input) We have E’, n:W, E”
 (n1:W1, ..., nk:Wk).P : T de-
rived from E’, n:W, E”, n1:W1, ..., nk:Wk
 P : T and T =
W1×...×Wk. Moreover, for all i � 1..k, if Wi = Cap1[Ti] then ni oc-
curs P ≤ 1. By induction hypothesis, E’, E”, n1:W1, ..., nk:Wk

P{n←M} : T. By Lemma 8-7, fn(M) ⊆ dom(E’). Hence, by Lem-
ma 8-8, ({n} ∪ fn(M)) ∩ {n1, ..., nk} = �. By Lemma 8-6, ni oc-
curs P{n←M}) = ni occurs P, for all i � 1..k. By (Proc Input), E’,
E”
 (n1:W1, ..., nk:Wk).(P{n←M}) : T. Since ({n} ∪ fn(M)) ∩
{n1, ..., nk} = �, this is to say that E’, E”
 ((n1:W1, ...,
nk:Wk).P){n←M}) : T.

14

Other cases. The other cases are almost exactly as before.

8-15 Proposition (Subject Congruence)
(1) If E
 P : U and P � Q then E
 Q : U.
(2) If E
 P : U and Q � P then E
 Q : U.

Proof

By mutual inductions on derivations.

(Struct Input) Then P = (n1:W1, ..., nk:Wk).P’, P’ � Q’, and Q =
(n1:W1, ..., nk:Wk).Q’.
For part (1), assume E
 P : U. This must have been derived from
(Proc Input), with E, n1:W1, ..., nk:Wk
 P’: U, where U =
W1×...×Wk. Moreover, for all i � 1..k, if Wi = Cap1[Ti] then ni oc-
curs P’ ≤ 1. By induction hypothesis, E, n1:W1, ..., nk:Wk
 Q’:
U. By Lemma 8-4, P’ � Q’ implies that ni occurs P’ = ni occurs
Q’ for each i � 1..k. Therefore, for all i � 1..k, if Wi =Cap1[Ti]
then ni occurs Q’ ≤ 1. By (Proc Input), E
 (n1:W1, ..., nk:Wk).Q’
: U.
Part (2) follows by symmetric considerations.

Other cases. The other cases are almost exactly as before.

8-16 Proof of Proposition 5-1 (Subject Reduction)
If E
 P : U and P ���������������� Q then E
 Q : U.

Proof

By induction on the derivation of E
 P : U.

(Red Comm) Then P = (n1:W1, ..., nk:Wk).P’ | �M1, ..., Mk� and Q
= P’{n1←M1, ..., nk←Mk}. Assume E

 P����:����U. This must have
been derived from (Proc Par) with E

 (n1:W1, ..., nk:Wk).P’����:����U
and E

 �M1, ..., Mk�����:����U. The judgment E

 (n1:W1, ..., nk:Wk).P’
:����U must have been derived from (Proc Input) with E, n1:W1, ...,
nk:Wk
 P’ : U, U = W1×...×Wk for some U = W1×...×Wk, and for
all i � 1..k, if Wi = Cap1[Ti] then ni occurs P’ ≤ 1. The judgment
E

 �M1, ..., Mk�����:����U must have been derived from (Proc Output)
with E
 Mi : Wi’ for each i � 1..k, for some W1’ ... Wk’, and U =

W1’×...×Wk’. Hence, Wi’ = Wi for each i � 1..k. By k applications
of Lemma 8-14, we get E
 Q : U.

Other cases. The other cases are almost exactly as before.

References
[1] Amadio, R. An asynchronous model of locality, failure, and

process mobility. In COORDINATION'97, LNCS 1282,
Springer. 1997.

[2] Boudol, G., Asynchrony and the π-calculus. Technical Re-
port 1702, INRIA, Sophia-Antipolis, 1992.

[3] Cardelli, L., Abstractions for Mobile Computation. 1998.
To appear. (See www.luca.demon.co.uk.)

[4] Cardelli, L. and A.D. Gordon, Mobile Ambients. In Founda-
tions of Software Science and Computational Structures,
Maurice Nivat (Ed.), LNCS 1378, 140-155, Springer. 1998.

[5] De Nicola, R., G. Ferrari, M. Pugliese, Coordinating Mobile
Agents via Blackboards and Access Rights. COORDINA-
TION'97, LNCS 1282, 220-237, Springer. 1997.

[6] Honda., K. and M. Tokoro, An object calculus for asynchro-
nous communication. Proc. ECOOP’91, LNCS 521, 133-
147, Springer Verlag, 1991.

[7] Kobayashi, N., B.C. Pierce, and D.N. Turner, Linearity and
the Pi-Calculus. Proc ACM POPL’96, 358-371. 1996.

[8] Milner, R., J. Parrow and D. Walker, A calculus of mobile
processes, Parts 1-2. Information and Computation, 100(1),
1-77. 1992.

[9] Odersky, M., Polarized Name Passing. Proc FST&TCS,
Springer. 1995.

[10] Pierce, B., and D. Sangiorgi, Typing and Subtyping for Mo-
bile Processes. Mathematical Structures in Computer Sci-
ence, 6(5), 409-454. 1996.

[11] Riely, J. and M. Hennessy, A typed language for distributed
mobile processes. In Proc ACM POPL'98, 378-390. 1998.

[12] Sewell, P., Global/Local Subtyping and Capability Infer-
ence for a Distributed π-calculus. In Proc ICALP'98,
Springer. 1998.

[13] White, J.E., Mobile agents. In Software Agents, J. Bradshaw,
ed. AAAI Press / The MIT Press. 1996.

